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The competition between the intrinsic motion of detonation and convected disturbance

is analyzed computationally by both performing a dynamic mode decomposition analysis

and obtaining the space-time correlations. The dynamic modes are considerably affected by

the presence of pre-shock forcing, while the space-time correlations are weakly affected by

the convected turbulence. The triple point motion dominates the space-time correlations

and manifests itself with a shift of the ellipsis towards the shock front.

I. Introduction

Rotating detonation engines (RDE) feature a non-uniform preshock field as a consequence of the filling
process. The interface between mixed products from a previous wave and the fresh mixture supports a
shear layer that impinges on the wave front as shown in Fig. 1. Such an interaction between convected
vorticity and the detonation wave defines non-ideal propagating waves and is of practical importance because
non-ideal detonations are characterized by a wave speed deficit and hot spots.1 The effect of non-ideal
preshock conditions on the performance of RDE is not known. In the previous work2, 3 we have shown that
turbulence–detonation interaction can be analyzed from two points of view. First, the coupling between the
exothermic structure of the detonation wave and the convected vorticity can be described in terms of the
ratio between half reaction distance and Taylor microscale N ≡ L1/2/λ0, and leads to selective amplification
of wave amplitudes in Fourier space. Second, the analysis of the interaction between convected preshock
perturbation and self-excited structures points to the importance of freestream entropic fluctuations in
changing the postshock statistics. The present paper analyzes the interaction between preshock vorticity
and the front in terms of space-time correlations. The primary objective of the research is to understand
the space-time coupling between lead shock and convected entropy and acoustic waves, thus space-time
propagation of structures. This effort will lead to the development and validation of sub-grid models for the
postshock field.

He et al.4 analyzed isotropic flows and correlated the accuracy of large eddy simulation (LES) models
to the prediction of both energy spectra and sweeping velocity. For shear (convectively unstable) flows, He
and Zhang5 proposed an elliptic model for time-space correlations that compounds information from both
convective (i.e. associated with the Taylor hypothesis) and random sweeping velocity (i.e. associated with
homogeneous turbulence with zero mean). In a recent work3 we have shown that a detonation wave is an
absolutely rather than convectively unstable system and its receptivity to postshock perturbations extends
several half-reaction distances behind the lead front. The present paper aims to validate and extend elliptic
models to the chemically reactive, self-excited post-detonation flow by determining contour of space-time
cross correlations under entropic and vortical forcing. The focus is on the existence of a unique convection
velocity, its scaling with the Chapman-Joguet (CJ) speed and the contribution of intrinsic scales. Cross-
correlations are evaluated based on large scale three-dimensional Navier-Stokes simulations carried out with
a high resolution WENO scheme. Correlation results at different distances from the lead shock are presented.
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Figure 1. Schematic of filling process in a rotating detonation engine. The blue shaded area shows the fresh mixture,
while the red shaded area shows the burnt mixture.

II. Methodology

A fifth-order WENO scheme with third-order Runge-Kutta time integration has been developed and val-
idated against the linear growth rate of small perturbations in Chapman-Joguet detonations. The algorithm
is applied here to obtain numerical solutions for three detonation cases: non-forced, vorticity-forced, and
entropy-forced. The cases are illustrated in detail in Massa et al.3 The magnitude of the vortical forcing
is given by the pre-shock turbulent Mach number, Mt = 0.235. The entropic case is related to the vortical
analog by the Morkovin’s6 form of the strong Reynolds analogy, which links density and velocity fluctuations

in the pre-shock through ρ′

ρ̄ = (γ − 1)M2 u′

ū .

The non-dimensionalization discussed in3 leads to a set of parameters described below. For a CJ
detonation, the heat release parameter Q is expressed in terms of the free-stream Mach number M as

Q ≡ Q̃
p0/ρ0

=
γ(M2

−1)2

2(γ2
−1)M2 .

A Mach number of 5.5 yields an adiabatic flame temperature of 2230 K, similar to that of small paraffins
in stoichiometric air. The scaled activation energy is taken close to the longitudinal instability limit for
planar detonations, with the rationale that galloping detonations feature slow pulsations that complicate
the task of obtaining meaningful averages.1 The Reynolds number based on the pre-shock Taylor scales
is Reλ ≡ (ρ0urmsλ) / (µ0) = 35, the Prandtl and Lewis numbers are fixed Pr = 0.72 and Le = 1. The
isentropic index is set to γ = 1.2 leading to a CJ velocity of vcj ≈ 1800m/s, in good agreement with
methane/air and propane/air mixtures.7 A final non-dimensional parameter expresses the ratio of Taylor
microscale to half-reaction distance L1/2, i.e., N ≡ L1/2/λ0.

Two values of N are used in previous work.3 Small scale simulations where the transverse distance is
smaller than the cell size are carried out with N = 1, and discussed in the dynamic mode decomposition
section §III.A. A grid of size 500 × 101 × 101 is used to simulate a domain with transverse extension
Ly = Lz = 9.1961 L1/2. Larger simulations, where the transverse domain is multiple times the cell size,
are carried out with a reduced value, N = 0.3, in order to properly resolve the convected turbulence.
Large simulations are performed on meshes of size 550 × 230 × 230 and domains with transverse extension
Ly = Lz = 82.4 L1/2. We showed that the two sets of grids provide similar results, thus only small grid
computations are discussed herein.

III. Elliptic model of space-time correlation

The streamwise velocity correlation behind the detonation wave is evaluated as

R (r, τ ; x1) = 〈u1 (x1 + r, x2, x3, t + τ)u1 (x1, x2, x3, t)〉. (1)
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Taylor’s hypothesis, if valid, leads to linear contours of R in the r, τ plane, i.e.,

Rr, τ ; x1 = R̃ (r − Uτ, x1) , (2)

for some function R̃. For shear flows, He and Zhang5 have shown that constant correlation contours are
ellipses centered on the origin. In the present case, the dispersion relation defined by the detonation instability
problem cause the ellipsis to bend and shift away from the (0,0) point. In this section we analyze such
contours and investigate the effect of boundary forcing. The reader should refer to our previous work on
turbulence–detonation interaction3 for a detailed explanation of the forcing conditions.

The contours of the space-time correlation for the three forcing cases are shown in Figs. 2-4. A comparison
among the three figures demonstrates that the forcing affects the contours marginally. On the other hand,
the streamwise non-homogeneity of the flow in the post-shock region supports elliptic profiles that are bent
towards the r−axis. More importantly, the profiles shift towards the bottom as the distance from the shock
increases. For large distances the shapes stabilize, but the purely advective condition of equation (2) is not
recovered. In particular, the maximum correlation is not at the origin (r, τ) = (0, 0), but is shifted towards
the shock and at τ = −0.5L1/2/

√

p0/ρ0, where the subscript 0 denotes the preshock, and L1/2 is the half
reaction distance. For an autocorrelation field, the outcome that the maximum is away from the origin might
seem a surprising result. This is explained by the rationale that perturbations at the shock front are larger
than in the burnt free-stream because they are supported by evanescent acoustic perturbations. Thus, we
conclude that the contribution of evanescent acoustics sustained by the corrugating shock makes the Taylor’s
hypothesis invalid behind the detonation wave.
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Figure 2. Non-Forced case space-time correlations versus r on the horizontal axis and τ on the vertical one. The panel
heading reports the distance from the shock. Flow is from left to right.

3 of 8

American Institute of Aeronautics and Astronautics



X−X
shock

=3

0 5 10
−1

−0.5

0

0.5

1

X−X
shock

=3.8861

0 5 10
−1

−0.5

0

0.5

1

X−X
shock

=4.7722

0 5 10
−1

−0.5

0

0.5

1

X−X
shock

=5.6582

0 5 10
−1

−0.5

0

0.5

1

X−X
shock

=6.5443

−4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

X−X
shock

=7.3418

−5 0 5
−1

−0.5

0

0.5

1

X−X
shock

=8.2278

−5 0 5
−1

−0.5

0

0.5

1

X−X
shock

=9.1139

−5 0 5
−1

−0.5

0

0.5

1

X−X
shock

=10

−5 0 5
−1

−0.5

0

0.5

1

Figure 3. Similar layout as described in Fig. 2, but for vorticity forced case.
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Figure 4. Similar layout as described in Fig. 2, but for entropy forced case.
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III.A. Dynamic mode decomposition

DMD determines and ranks temporal evolution modes according to their coherency. The dynamic modes
are the eigenvectors of a reduced evolution operator evaluated by algebraic manipulation of the matrix of
solution snapshots. The extraction of modes does not involve spatial or temporal averaging, therefore, it
overcomes the shortcomings of the bi-orthogonal8 and proper orthogonal8 analogs for the analysis of systems
with a large spectrum of time and length scales (see discussion in Schmid9).

The reduced system dynamics is described by a low order matrix S̃ evaluated based on the matrix
of snapshots V n+1

1 ≡ {v1, v2, . . . , vn+1}, where vi is a column vector of size m representing the state of
the system at an instant in time. The matrix S̃ is related to the full-system matrix A via an approximate
similarity transformation S̃ = UHAU , where U contains the economy right singular vectors of V n

1 = UΣWH .
The similarity transformation yields S̃ ≡ UHV n+1

2 WΣ−1. In general, the size of the discretized system m
is much larger than the number of snapshots n, thus the singular value decomposition is thin (see10 p. 72)
and the similarity transformation is approximate. The full-system eigenmodes are obtained by multiplying
the right eigenvectors yi (corresponding to the eigenvalues µi) of S̃ times U , i.e.,

Φi = Uyi. (3)

Each eigenmode is associated with a degree of coherence, χi = yT
i Diag (Σ) , where Diag (Σ) is the economy

size (i.e., length n ) vector of singular values. The singular values rank the coherency of the time-averaged
spatial structures, (i.e., the topos of8); the coherency of dynamic modes is, thus, evaluated as the product
of the coherency of the topos and the coefficients of the linear mapping in equation (3).

The temporal modal frequencies λi ≡ log (µi) are shown in Fig. 5 for the three cases. The vertical
symmetry of the maps is explained by noting that λ values are either real or complex conjugate pairs, because
S̃ is real by construction. The values are drawn with symbols of magnitude and color scale proportional to
their coherency. Figure 5 shows a good degree of similarity between the maps of entropy-forced and non-
forced cases, with a narrow distribution around the dominant real (large brown circle) eigenvalue. On the
other hand, the vorticity-forced case features a wider distribution of eigenvalues, manifesting the presence of
coherent short time scales. The coherence measure of the non-forced mode is markedly larger than that of
the two forced analogs; moreover, vorticity supported structures are more coherent than the entropy analogs.
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Figure 5. Maps of eigenfrequencies λi for non-forced (left), vorticity-forced (middle) and entropy-forced (right) deto-
nations. The size and color of the symbols scales with the mode coherency.

The most coherent non-trivial eigenmodes, i.e., those with imaginary part different from zero, are shown
in Fig. 6, where the first column refers to the non-forced case, the second to the vorticity-forced, and the third
to the entropy-forced analog. Only the real parts of the dynamic mode of the mass fraction Y are shown. In
fact, the imaginary parts are qualitatively similar to the real ones. The non-forced modes display the global
motion of the triple-points; long range interaction can be inferred from the extension of the coherent regions;
less coherent modes (2nd and 3rd panel of the first row) support fluctuations with a smaller spatial scale.
The vorticity-forced case (second row) is dominated by a “stirring mode”, which is not related to motion of
the triple-point, but to the convected turbulence. The eigenvector features strongly coherent fluctuations in
the post-shock, which promote mixing in the induction region. The second mode of the vorticity-forced case
(second row and second column) is structurally similar to the second mode of the non-forced case (first row
second column). The entropy-forced detonation is, also, dominated by a “stirring mode” featuring structures
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elongated in direction parallel to the flow. Differently from the vorticity-forced case, the second global mode
of the unforced case is not present. By examining the coherence measures reported on the title of each panel,
we conclude that the entropy-forced case supports less coherent structures than the two other cases.

Figure 6. Most coherent modes in unforced (first row), vorticity forced (second row), and entropy-forced (third row)
detonations. The title on top of each panel represent a measure of coherency, i.e., χi/χmax. Note, the lefter-most panel
has χi/χmax < 1 because the most coherent mode is trivial, see Fig. 5.

IV. Conclusions

We present a computational analysis of Chapman-Joguet detonations with the goal of understanding the
suitability of LES models based on the Taylor’s hypothesis in the post-detonation regions. The analysis leads
us to two main conclusions. First, the Taylor’s hypothesis is not valid immediately behind the wave because
of the contribution of evanescent pressure waves supported by the shock corrugation. Second, space-time
correlations are not sufficient to distinguish the dynamic contribution of the interaction of turbulence and
detonations. The averaging which is intrinsic in the evaluation of expected values in equation (1) leads to
a loss of information. In this respect, we find that the dynamic mode decomposition of Schmid9 performs
much better in defining the contribution of convected and intrinsic detonation modes.
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